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A new topological electron-counting theory based on Euler's theorem and the effective atomic number (EAN) rule is developed 
to predict electron counts of a large number of polyhedral metal clusters. Each polyhedron (of given numbers of vertices 
and faces) is characterized by a parameter X ,  which is defined as the number of "extra" electron pairs "in excess" of the 
EAN rule. The parameter X for simple, capped, or condensed (via vertex-, edge-, or face-sharing) polyhedra can be estimated 
from a set of simple, consistent rules. This simple electron-counting scheme can be used to correlate the known structures 
as well as to predict the yet unknown polyhedra of a wide range of transition-metal or post-transition-metal clusters of 
varying nuclearity. The results (cf. following paper) are in good agreement with experimental observations as well as other 
theoretical calculations. Qualitative theoretical justifications for the rules for evaluating the parameter X are also presented. 

Introduction 

Metal cluster compounds exhibit a wide range of nuclearity 
with intriguing structural diversity.' Systematic efforts aimed 
at understanding the electronic and stereochemical require- 
ments of these metal clusters have been initiated by several 
research groups. Particularly noteworthy are the extension 
of borane-type rules to transition-metal clusters (skeletal 
electron pair (SEP) t h e ~ r y ) , ~ ? ~  graph theory," perturbed 
spherical shell theory,s isolobal con~ep t ,~ -~ .~* '  and the extended 
Hiickel molecular orbital (EHM0),6-l0 Fenske-Hall ap- 
proximate Hartree-Fock,' ' , 1 2  and SCF-Xa-SW calcula- 
tions. ' 3-15 
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Although approximate molecular orbital (MO) calculations 
often provide a better understanding of the electronic structure 
of a few chosen clusters and the SEP theory has the advantage 
of simplicity and applicability to many clusters based on or 
derivable from triangulated polyhedra, transition-metal clusters 
often exhibit polyhedral frameworks that do not correspond 
to those of boranes16 (which are based on or derivable from 
triangulated polyhedra). Also, metal clusters often exhibit 
multiple electron counts for the same geometry (with or 
without structural distortion). Furthermore, with just a few 
exceptions, e.g. [Pt3(C0),],Z-" and NiE(C0)8(p4-PPh)6,'E 
metal cluster compounds seldom show empty cavities greater 
than octahedral, in contrast to main-group or naked post- 
transition-metal clusters. These differences suggest that in 
transition-metal clusters additional atomic orbitals are 
available for cluster bonding. For metal carbonyl clusters, the 
occupancy of extra cluster valence molecular orbitals may also 
be favored by the a-acidity of the carbonyl ligands. 

In this paper, a new electron-counting theory that can be 
applied to a wide range of transition-metal or post-transi- 
tion-metal clusters is developed. This simple topological 
electron-counting approach is based on Euler's theorem for 
polyhedra and the effective atomic number rule for transi- 
tion-metal complexes. This electron-counting approach, which 
requires no theoretical calculations, provides new insights into 
the electronic requirements of various polyhedral cluster 
structures and their interrelations. We will illustrate the utility 
of this new electron-counting scheme via a few illustrative 
examples. Qualitative theoretical justifications of the rules 
for evaluating the parameter X are also presented. A more 
extensive application to metal clusters containing 4-20 metal 
atoms can be found in the following paper.19 
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Chart I 
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chart I1 

x =  0 I 2 

CAPPING : X = ( n - 3 )  23 40 

Chart I11 

61 24 70 

3-CONNECTED POLYHEDRA: X = O  
(INCLUDING PRISMS) 

Topological Electron-Counting Theory 
Consider a three-dimensional framework of metal (M) 

atoms bonded to ligands (L) in a metal cluster. The metal 
atoms form a bonding polyhedron with regular faces. Each 
face consists of three, four, or five metal atoms forming a 
triangle, a square, or a pentagon, respectively. The edges of 
each face correspond to a bonding metal-metal distance more 
or less equivalent to that of a single metal-metal bond. 

In this paper, we shall restrict our discussions to spin-paired, 
high-symmetry, bonding polyhedra of V surface metal atoms 
where 4 5 V 5  20. Ligands, as well as any encapsulated (bulk) 
metal atoms, are to be considered as electron donors and not 
as part of the polyhedral framework. 

For a polyhedron with V vertices, F faces, and E edges, 
Euler’s theorem states that 

E = V + F - 2  (1) 
Assuming each atom on the surface of the polyhedron has the 
tendency to attain the 18-electron noble-gas configuration (the 
so-called effective atomic number rule) and that each edge 
can be considered as a two-center, two-electron metal-metal 
bond, the total electron count N for the cluster is 

N = 18V- 2E (2) 
The N electrons will fill the N/2 energetically low-lying metal 
cluster valence molecular orbitals (CVMO):8*9 

CVMO = N/2 = 9V-  E 

CVMO = N / 2  = 8V-  F + 2 

(3) 

(4) 

However, for a delocalized system not all metal-metal in- 
teractions can be considered as two-center, two-electron (2c- 
2e) bonds. So an adjustment factor X must be added to eq 

(5a) 

= 8 V - F +  2 + X  (5b) 
where X is the number of “extra” electron pairs “in excess” 
of the EAN rule. An alternative but equivalent interpretation 
of X is that it is the number of “false” metal-metal bonds or, 
in molecular orbital terminology, the number of ”missing” 
antibonding cluster orbitals if each polyhedral edge is con- 
sidered as a two-center, two-electron bond. 

We propose the following simple rules for estimating the 
value X for a wide variety of polyhedra. Some of the results 
are tabulated in Table I of the following paper. Throughout 
this paper, each polyhedron is designated by an italic number 
(cf. first column in Table I of the following paper) for the sake 
of convenience. We also use the notation ( m  ‘tf...) to denote 
r m-gonal faces, s n-gonal faces, ..., of a polyhedron. Capping 

When eq 1 is substituted into eq 3 

2-4 
CVMO = N/2 = 9 V -  E + X 

I 3 l0 

PYRAMIDS: X=O 

Chart IV 

2 6 I5 

x =o I 2 
BlPYRAMlDS VIA CAPPING 

Chart V 

x = 2  I , 3  2 

BIPYRAMIDS : INVERTED HUCKEL 

of a trigonal, a tetragonal (or square), and a pentagonal face 
is represented by the symbols A, 0, and 0, respectively. 

Rule 1: For all 3-connected polyhedra (i.e. each metal atom 
is bonded to three other metal atoms), X = 0. Examples 
include all the prisms, cube, (4454) octahedron, cuneane, (3464) 
octahedron, dodecahedron, etc (cf. Chart I). 

Rule 2: Capping an n-gonal face of a polyhedron leads to 
an increase of X by n - 3.  Hence capping a trigonal, tetragonal 
(or square), and pentagonal face will give rise to X = 0, 1, and 
2, respectively (Chart 11). 

Rule 3: X = 0 for all pyramids (Chart 111). 
Rule 4: The X values for the bipyramids can be determined 

either by capping the corresponding pyramids as illustrated 
in Chart IV or by using a graphical rule shown in Chart V. 
The method of the latter chart resembles that of counting the 
number of “inverted” Huckel orbitals for the highest symmetry 
plane of the bipyramid (filled circles). Hence X = 0 or 2 for 
a trigonal bipyramid, X = 1, 3 for a tetragonal bipyramid, and 
X = 2 for a pentagonal bipyramid. (The higher values, 
however, should be considered as “exceptions” because X = 
2 for a trigonal bipyramid usually means axially elongated 
(along the 3-fold axis) structures, whereas X = 3 for a tet- 
ragonal bipyramid is a rare occurrence-only a few examples 
are known so far-which may also give rise to structural 
distortion.) 

Rule 5: The X values for the antiprisms are determined by 
a graphical rule illustrated in Chart VI, which can be en- 
lightened to the number of bonding Huckel orbitals (filled 
circles) for the n-gonal plane. Hence X = 1 for a trigonal 
antiprism, X = 1, 3 for a square antiprism, and X = 3 for a 
pentagonal antiprism. 

Rule 6: X = S for vertex- or edge-sharing (connected) 
polyhedra, where S is the number of shared vertices or edges, 



New Topological Electron-Counting Theory 

Chart VI 

Inorganic Chemistry, Vol. 23, No. 9, 1984 1253 

Chart VI11 

7 21 39 
8 IO 

X = I  1 *3 3 
ANTIPRISMS : HUCKEL 

Chart VI1 

2 3 

respectively. X = -H for face-sharing (fused) polyhedra (not 
derivable from simple capping of the components), where H 
is the number of “hidden” edges. 

Rule 7 (structural perturbations of polyhedra): If, by the 
addition of Y electron pairs to a polyhedron with F1 faces and 
an X value of Xl, a structural perturbation occurs that converts 
the original polyhedron to a new polyhedron with F2 faces, then 
the X value for the new polyhedron is given by 

x, = XI + (F2 - F , )  + Y ( 6 )  
The variable Y can be either positive (adding electrons) or 
negative (subtracting electrons). Equation 6 can be used to 
estimate the X values for a few polyhedra for which rules 1-6 
cannot be applied in a straightforward manner. It should be 
cautioned, however, that, for large clusters, Y represents the 
upper limit rather than the precise number of the electron pairs 
needed to induce the polyhedral transformation (vide infra). 
The reason is that not all the polyhedral edges can be con- 
sidered as 2c-2e bonds. This is particularly true if the two 
polyhedra are quite similar in terms of bonding. We shall 
discuss this point in a later section. 
Qualitative Theoretical Justifications 

In this section, we shall provide some qualitative theoretical 
justification for the phenomenological rules concerning the 
determination of the value X .  A more quantitative account 
will be published in a forthcoming paper. 

Rules 1 and 2 follow directly from the assumption that each 
metal atom contributes (primarily) three orbitals for polyhedral 
skeletal bonding. For polyhedral metal clusters in which each 
metal is bonded to three other metal atoms with two-center 
electron-paired bonds, we have an “electron-precise” molecule 
that obeys the EAN rule and hence X = 0 (rule 1). As 
illustrated in Chart 11, since each metal atom has only three 
orbitals available for skeletal bonding, capping a polygon of 
n atoms means that only 3,  not n, metal-metal bonds are being 
formed. Hence we must add X = n - 3 CVMOs to com- 
pensate for the n - 3 edges subtracted in eq 5a (Le. the EAN 
rule overcounts the metal-metal bond pairs by n - 3 (rule 2). 

The reason that X = 0 for the pyramids (rule 3) is illustrated 
in Charts VI1 and VIII. A square pyramid (cf. Chart VII) 
can be formed by adding two electrons to a trigonal bipyramid 
(with X = 0), cleaving one of the equatorial edges. In this 
process, the number of faces decreases by 1 (from 6 to 5), 
which precisely accounts for the increase of the number of 
electron pairs by 1 (cf. eq 5b and 6 ) .  In other words, a square 
structure can “store” two electrons more than two triangles 
sharing an edge can. Similarly, a pentagonal pyramid (Chart 

chart IX 

X Y  

Chart x 

= e ,  Y 2  

- a2 

= e  

-b2  
0 ri: 

VIII) can be formed by breaking the basal edge closest to the 
capping atom of a capped square pyramid via addition of two 
electrons. Again the number of faces decreases by 1 (from 
7 to 6 ) ,  which exactly accounts for the increase by 1 of the 
number of bonding skeletal electron pairs. Hence X = 0 
remains unchanged. 

The X values for bipyramids (rule 4) and antiprisms (rule 
5) can be deduced in the following way. Consider the equa- 
torial plane of the bipyramids. Each equatorial atom needs 
two out-of-plane orbitals to interact with the two apical atoms. 
These two orbitals can be hybridized to give an “inward” 
orbital (yz) and a “tangential” orbital ( x y )  as illustrated in 
Chart IX (only al(Jz) and a,(xy) orbitals are shown in each 
case). Symmetrization of the “inward” orbitals gives rise to 
the Hiickel type group orbital diagram (yz) and a similar 
treatment of the “tangential” orbitals gives the “inverted” 
Hiickel type group orbitals (xy)  as shown in Chart X. Since 
the “inward” orbitals point directly at the apical atoms in the 
bipyramids, their interactions with the apical atoms are much 
stronger than those of the ”tangential” orbitals. Hence, the 
resulting bonding molecular orbitals of the former interactions 
(Jz) will lie at lower energies and be filled first. The relative 
ordering of the corresponding antibonding orbitals will be just 
the opposite. The “excess” skeletal electron pairs therefore 
preferentially occupy the tangential xy orbitals for bipyramids. 
The number, X ,  can be estimated by the number of low-lying 
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tangential xy group orbitals which are bonding or nonbonding 
between the “in-plane” atoms: viz., X = 2 (e) for a trigonal 
bipyramid, X = 1 (b2) or 3 (b2 + e) for a square bipyramid 
or octahedron, and X = 2 (e2) for a pentagonal bipyramid (cf. 
bottom half of Chart X) under C,  symmetry. The above 
treatment also predicts that X = 2 should have an elongated 
structure with the axial-equatorial distances being substantially 
longer than the equatorial-equatorial distances since the e(xy) 
orbitals being occupied are antibonding between the “in-plane” 
and the “out-of-plane” atoms (but bonding between the “in- 
plane” atoms). This is indeed observed (vide infra). 

The situation for antiprisms is opposite to that of bipyramids. 
Here the “tangential” orbitals point toward the atoms of the 
other layer and hence interact more strongly with them than 
the “inward” orbitals (cf. Charts IX and X). Thus, the 
bonding (with respect to interlayer interaction) “tangential” 
xy orbitals will be filled first and the “excess” skeletal electron 
pairs, if any, will occupy the “inward” yz  orbitals. The number, 
X ,  can again be estimated by the energetically low-lying y z  
group orbitals which are either bonding or nonbonding among 
the “in-plane” atoms-viz., X = 1 (al) for a trigonal antiprism 
or octahedron, X = 1 (al) or 3 (al + e) for a square antiprism, 
and X = 3 (a, + el) for a pentagonal antiprism. 

Vertex-sharing or edge-sharing (connected) polyhedra (rule 
6) follow the modified Euler’s equation 

E = V + F - 2 - S  ( 7 )  

where S is the number of shared vertices or edges, respectively. 
From eq 5, X = S. Face-sharing or fused polyhedra follow 
the modified Euler’s equation 

E = V + F - 2 + H  (8) 

where H is the number of “hidden” edges (buried inside the 
fused polyhedron). From eq 5, X = -H. If no hidden edges 
are present or the hidden edges are lengthened to a nonbonding 
distance, then X = 0. Note also that only the exposed faces 
are included in the face count F. 

Finally, rule 7 follows directly from eq 5b since the number 
of vertices remains unchanged. 

We close this section by noting that the X values predicted 
by the various rules for the same or similar polyhedra are quite 
consistent. For example, an octahedron can be considered as 
a capped square pyramid, a trigonal antiprism, or a square 
(or tetragonal) bipyramid with 12 equal edges. The predicted 
X values are 1, 1, 1, and 3, respectively. In fact, the majority 
of octahedral metal clusters conform to X = 1. 

The equivalent interpretation of X as (1) the number of 
electron pairs “in excess” of the EAN rule or (2) the number 
of “false” metal-metal bonds (or, in the molecular orbital 
language, the number of “missing” antibonding cluster orbitals) 
can be illustrated with tetrahedral and octahedral clusters. In 
a tetrahedral cluster all six edges can be considered as two- 
center, two-electron bonds. The EAN rule works and X = 0. 
In an octahedral cluster the value of X is 1, which means that 
there is one electron pair “in excess” of the EAN rule. In 
molecular orbital terminology, there are 11 rather than 12 
antibonding cluster orbitals and hence we have the equivalent 
of 11 rather than 12 metal-metal bonds, which means that 
there is one “false” metal-metal bond (note that an octahedron 
has 12 edges). In this respect, the electron counting scheme 
described in this paper may also be termed as topological 
electron-orbital counting theory. 
Results and Discussion 

The topological electron-counting theory proposed in this 
paper applies only to bonding polyhedral metal clusters with 
more or less compact structures. The polyhedra are formed 
by regular polygons with edges corresponding to single met- 
al-metal bond distances. Each metal atom more or less 

Teo 

satisfies the effective atomic number (or the 18-electron) rule. 
If any of these criteria are relaxed, “exceptions” to these rules 
can occur. Extension of the topological electron-counting 
theory presented here to the “exceptions” will be described 
elsewhere. 

The simple electron-counting scheme developed in this paper 
can be used to predict the number of electrons required for 
a wide range of transition-metal cluster or post-transition-metal 
naked clusters. Some of these results are tabulated in Table 
I of the following paper.19 Also included in Table I (following 
paper) are the observed electron counts along with some il- 
lustrative examples. (Note that in this and the following paper, 
each polyhedron is designated by an italic number for the sake 
of convenience). While Table I (cf. following paper) is self- 
explanatory, a few representative examples will be discussed 
here to illustrate the utility of the theory. 

Counting Electrons. The total electron count, N ,  of a given 
cluster is determined in the usual way by adding up the valence 
electrons contributed by the metal atoms and the electrons 
donated to the metals by the ligands. Thus, a rhodium atom 
has nine valence electrons, a carbonyl ligand (terminal or 
doubly or triply bridging) is a two-electron donor, a nitride 
is a five-electron donor, etc. Special attention should be paid 
to the difference between surface and bulk ligands. For ex- 
ample, N = (8 X 9) + (2 X 4) + (4 X 4) + (8 X 3) = 120e 
for the cuneane-like cluster C O ~ S ~ ( N - ~ - B ~ ) ~ ( N O ) , ~ ~  and N = 
(10 X 9) + (1 X 6 )  + (22 X 2) + 2 = 142e for the bicap- 
ped-square-antiprismatic cluster [RhIoS(C0)22]2-.21 In the 
former case, each ”surface” sulfur (with one lone pair) donates 
four electrons whereas, in the latter case, the encapsulated 
“bulk” sulfur contributes all six of its valence electrons to the 
cluster. 

Rules for the Determination of X .  The following examples 
illustrate how each of the rules for the determination of pa- 
rameter X can be applied to a given polyhedron. 

First, the 3-connected polyhedra (cf. Chart I), including the 
prisms, have X = 0 (rule 1). With five faces, the trigonal prism 
11 is predicted to have 90 electrons (as is observed in, for 
example [Rh6C(CO)Is]2-22 and [CO,N(CO),,]-~~); with six 
faces, the cube 23 is predicted to have 120 electrons (as ob- 
served in Ni8(PPh)6(C0)818), and with seven faces, the pen- 
tagonal prism 40 is expected to have 150 electrons (yet un- 
known). The cuneane-type cluster 24 (V = 8 ,  F = 6, X = o), 
a 120-electron cluster (cf. Chart I and eq 5b) was observed 
in C O & ( N - ~ - B U ) ~ ( N O ) ~ . ~ ~  A tetrahedron can be considered 
as either a 3-connected polyhedron or a pyramid; both rule 
1 and rule 3 give X = 0. Equation 5b predicts an electron 
count of 60e ( V  = 4. F = 4) as is indeed observed in. e.g.. 
( V ~ - C ~ H ~ ) ~ F ~ ; (  C0)4,’24 Fe4( NO)4S4,25 and Ir4( CO) 2i6a :r 
Co4(CO)12.26b 

Second, capping one of the triangular faces of a square 
pyramid gives capped square pyramid 8 (cf. Chart VIII); rule 
2 predicts X = 0. With six vertices and seven exposed faces, 
eq 5b predicts an electron count of 86e as is indeed observed 
in O S ~ H ~ ( C O ) , , . ~ ~  In contrast, capping the square face of 
the square pyramid gives the octahedron which has X = 1 (rule 
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Chem. SOC. 1979, 101, 7095. 
(24) Neuman, M. A,; Trinh, T.; Dahl, L. F. J .  Am.  Chem. SOC. 1972, 94, 

3383. 
(25) Gall, R. S.; Chu, C. T. W.; Dahl, L. F. J .  Am. Chem. SOC. 1974, 96, 

4019. 
(26) (a) Churchill, M. R.; Hutchinson, J. P. Inorg. Chem. 1978, 17,  3528. 
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Chem. Commun. 1976. 883. 
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2). With V = 6 and F = 8, N = 86e is predicted as is observed 
for the majority of octahedral metal  cluster^.^^-^^ 

Third, rule 3 applies to all pyramids, resulting in X = 0 (cf. 
Chart 111). Hence, tetrahedron 1, square pyramid 3, and 
pentagonal pyramid 10 are predicted to have 60, 74, and 88 
electrons, respectively. Most of the tetrahedral clusters have 
60  electron^.^^-^^ One example of the 74e square-pyramidal 
cluster is RU,C(CO), , .~~ No examples are yet available for 
pentagonal-pyramidal metal clusters. 

Fourth, the X values for the bipyramids can be determined 
by either capping the corresponding pyramids as illustrated 
in Chart IV or by using a graphical rule shown in Chart V. 
The latter scheme resembles that of counting the number of 
“inverted” Hiickel orbitals for the highest symmetry plane of 
the bipyramid (filled circles). Hence X = 0 or 2 for a trigonal 
bipyramid, X = 1, 3 for a tetragonal bipyramid, and X = 2 
for a pentagonal bipyramid. (The higher values, however, 
should be considered as “exceptions” in that X = 2 for a 
trigonal bipyramid usually means axially elongated (along the 
3-fold axis) structures whereas X = 3 for a tetragonal bi- 
pyramid is a rare occurrence (only a few examples are known 
so far), which may also give rise to structural distortion.) 
Equation 5b therefore predicts electron counts of 72e and 76e 
for trigonal-bipyramidal, 86e (or 90e) for octahedral (or 
tetragonal-bipyramidal), and 1 OOe for pentagonal-bipyramidal 
metal clusters. The obvious examples are as follows: (a) 
trigonal pyramidal structures, 72e, Sn:-, Pb52-;32 
76e, [Ni,(CO) 12] 2-,33 [ Rh,( CO) 141] 2-;34 (b) octahedral 

( ~ J ~ - C , H , ) ~ , ~ ~  Fe6Ss(PEt3)62+.36 The pentagonal-bipyramidal 
structure is yet unknown in metal cluster chemistry. 

Fifth, rule 5 (cf. Chart VI) gives X = 1 for a trigonal 
antiprism, X = 1, 3 for a square antiprism, and X = 3 for a 
pentagonal antiprism. The predicted electron counts are as 
follows: 86e for trigonal-antiprismatic metal clusters (as is 
observed in [Ni6(C0)12]2-37); 114e and 118e for square-an- 
tiprismatic metal clusters (e.g., 114e was observed in [Co8C- 
(CO)la]2-38 and 118e was observed in [Ni8C(C0)16]2-39). 
Pentagonal-antiprismatic structures have not been observed 
in metal cluster chemistry. 

Sixth, to illustrate the utility of rule 6, let us consider the 
edge-sharing bioctahedron shown in Chart XI. A total X 

Structures, 86e, Rh6(CO)16,2a [Fe6C(CO)16]2-;29 90e, Ni6- 

(28) Corey, E. R.; Dahl, L. F.; Beck, W. J .  Am. Chem. SOC. 1963.85, 1202. 
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value of 3 is expected for this structure since each octahedron 
contributes an X value of 1 (rule 4) and edge-sharing (rule 
6) further increases the X value by 1. With 10 vertices and 
16 exposed faces, the electron count is predicted to be 138e. 
The observed electron count in [ R U ~ ~ C ~ ( C O ) ~ ~ ] ~ -  d i a n i ~ n , ~ ~  
which has two carbides, one in each of the two octahedral 
holes, is (10 X 8) + (2 X 4) + (24 X 2) + 2 = 138e. As an 
example of a hidden edge, Chart XI1 depicts the metal 
framework of the [ R U ~ , ( C O ) ~ ~ ] ~ -  trianion$l whose structure 
can be described as a face-to-face fused trioctahedron (41a). 
The net X value is 2 for this cluster since three octahedra give 
rise to a total X value of 3 (rule 4) and one “hidden edge” 
within the polyhedron contributes an X value of -1 (rule 6). 
With 18 “exposed” faces eq 5b predicts an electron count of 
148e, as is indeed observed. If the “hidden” edge is lengthened 
by adding two electrons to 41 a, the yet-unknown polyhedron 
of face-to-face trioctahedra without the central edge (41 6) and 
with 150-electron count is expected. 

Finally, the utility of rule 7 is best illustrated by Chart XIII, 
which shows how the X value of a triangular dodecahedron 
can be determined via polyhedral structural perturbation. As 
shown in Chart XIII, the eight-vertex triangular dodecahedron 
or dodecadeltahedron (19) can be formed by closing one 
nonbonding edge while opening another of a bicapped octa- 
hedron (1 76) or a fused octahedron and trigonal bipyramid 
(18); the numbers of edges or faces remained unchanged in 

(40) Hayward, C. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C.; Rheingold, 
A. L. J .  Am. Chem. SOC. 1982, 104,1341. 

(41) Fumagalli, A,; Martinengo, S.;  Ciani, G.; Sironi, A. J .  Chem. SOC., 
Chem. Commun. 1983, 453. 
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both cases and hence X =: 1. Another route to 19 is to remove 
two electron pairs (Y  = -2), one from each of the two square 
faces of a square antiprism 21, thereby forming two new 
metal-metal bonding interactions (Chart XIII) and hence 
shortening the two metal-metal distances involved either via 
structure A or structure 20c. In the process, the two square 
faces are buckled to form triangle faces (F2 - F,  = 4-2 = 2), 
and from eq 6, X ,  = XI = 1 or 3 remains unchanged. With 
8 vertices and 12 faces, a triangular dodecahedral metal cluster 
is predicted to have 110 or 114 electrons. No known structures 
are yet available. 

Capping. As is evident from Table I of the following paper, 
though capping the different faces of a polyhedron may give 
rise to different X values, the resulting electron count remains 
unchanged. For example, capping the triangular vs. the square 
face of a trigonal prism gives rise to X = 0 and 1, respectively, 
yet both are 102e systems. The reason is that though capping 
a n-gonal face causes an increase in X by n - 3, the total 
number of faces increases by the same quantity and hence N 
remains unchanged (cf. eq 5b). This observation is analogous 
to Mingos' capping principle4, that the number of polyedral 
skeletal MOs are unchanged by capping. 

Multiple XValues. As the number of vertices increase, the 
number of possible polyhedra increases rapidly and the electron 
count becomes increasingly difficult to predict due to the fact 
that the cluster valence molecular orbitals become increasingly 
closer to one another such that a cluster may take on several 
values of electron count and remains more or less stable. For 
the same reason, a cluster may take on several X values de- 
pending on how the polyhedron is derived, described, or ap- 
proximated. In some cases the metal polyhedral structure 
remains unaffected whereas in other cases the polyhedron may 
be perturbed for different electron counts. The latter case is 
exemplified by the two electron counts for a trigonal bipyra- 
mid: a 72e ( X  = 0) s y ~ t e m ~ ' ? ~ ~  has all nine metal-metal dis- 
tances more or less equal whereas a 76e ( X  = 2) ~ y s t e m ~ ~ , ~ ,  
often has a trigonally elongated structure with the apical- 
equatorial metal-metal distances being significantly longer 
than the corresponding equatorial-equatorial distances. An 
even more interesting example is the tricapped trigonal prism. 
For the nine-vertex tricapped (03) trigonal prism 27c, rule 2 
predicts X = 3 for capping the three square faces of a trigonal 
prism I 1  (Chart XIV). A second route to a tricapped trigonal 
prism (a deltahedron) is to remove one electron pair (Y= -1) 
from the square face of a monocapped (0) square antiprism 
(28b), thereby forming a new metal-metal bond and buckling 
the square face to form two triangle faces (F2 - F,  = 1). Again 
X ,  = XI = 2 or 4 remains unchanged (cf. eq 6). Thus the 
expected X value for a tricapped trigonal prism is 2 ,  3 ,  or 4. 
Equation 5b gives electron counts of 124, 126, or 128 electrons, 
respectively. Since the 126-electron count is derived from X 
= 3 via tricapping a trigonal prism of D j h  symmetry and the 
124- or 128-electron count is derived from X = 2 or 4 via 
perturbation of a square-face-capped square antiprism of D,, 

53 54 55 
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symmetry, it is conceivable that a 126e tricapped trigonal prism 
will conform more to the D3h symmetry than a 124- or 128- 
electron system which may have a structure approaching that 
of a distorted monocapped square antiprism (rhombic dis- 
tortion of the square face). The Gq2- d i a n i ~ n ~ ~  is an example 
of a 128e tricapped trigonal prism that is distorted away from 
D3* symmetry along the C, pathway toward the C, symmetry 
of a capped square antiprism (see ref 43). We take this ob- 
servation as good evidence that multiple X values can mean 
perturbation in the polyhedral structure andlor variation in 
the cluster bonding capabilities (requirements). 

Polyhedral Transformation. It should be emphasized that, 
for clusters of high nuclearity, small structural perturbations, 
which amount to relatively small energy changes, can trans- 
form the cluster from one polyhedron to another. Some ex- 
amples have been shown in Charts XI11 and XIV. Yet another 
example is the transformation of icosahedron to cuboctahedron 
or twinned cuboctahedron. As shown schematically in Chart 
XV, the cuboctahedron 54 can be visualized as formed by 
adding Yelectron pairs to an icosahedron 53, thereby resulting 
in a lengthening of six metal-metal distances. Since 12 tri- 
angular faces are converted to 6 square faces (F2 - F ,  = -6), 
the X value for a cuboctahedron becomes 7 - 6 + Y = 1 + 
Y (note that 7 is the X value for the icosahedron). Since each 
edge of an icosahedron probably corresponds to a metal-metal 
bond order of less than unity, we expect Y to be 1 5 Y < 6. 
The same X value applies to the twinned cuboctahedron 55, 
which is related to the cuboctahedron by rotating one of the 
two triangles about the principal symmetry axis by 60' (cf. 
Chart XV). With V = 12, F = 20, and X = 7 (bicapping a 
pentagonal antiprism: X = 2 X 2 + 3), an icosahedral metal 
cluster is predicted to have 170 electrons, as is indeed observed 
in the [Rh12Sb(C0)27]3- trianion.44 A twinned cuboctahedron 
was observed for the 170e systems [Rh13(C0)24HS-n]n- cor- 
responding to Y = 0 and X = 1 .45 Similar values are expected 
for a cuboctahedron, which is yet unknown in metal cluster 
chemistry. The reason that the conversion of an icosahedron 
to a cuboctahedron or a twinned cuboctahedron requires a Y 
value of 0 rather than 6 is that, for these three polyhedra, 
despite their distinctive symmetries, the bonding requirements 
are quite similar. Hence, for large clusters, Y represents the 
upper limit rather than the precise number of electron pairs 
required to induce the polyhedral transformation. Note also 
that the cuboctahedron (54)  has an A, B, C pattern, corre- 
sponding to cubic close-packed (ccp), whereas the twinned 
cuboctahedron (55) has an A, B, A pattern, corresponding to 
the hexagonal close-packed (hcp) structure shown in Chart 
XV. 

Finally, it is also obvious from eq 6 (rule 7) that if the 
addition of Y electron pairs results in a loss of Y faces ( F 2  - 

(43) Belin, C. H. E.; Corbett, J. D.; Cisar, A. J. Am. Chem. SOC. 1977, 99, 
7163. 

(44) Vidal, J. L.; Troup, J. M .  J .  Organomer. Chem. 1981, 213, 351.  
(45) Ciani, G.; Sironi, A,; Martinengo, S. J .  Chem. SOC., Dalton Trans. 1981, 

519. (42) See ref 23 in ref 10b of this paper 
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F,  = -0 of a given polyhedron, the X value remains un- 
changed. Examples have been shown in Charts VI1 and VIII. 

Polyhedral Holes and Condensed Polyhedra. It is possible 
to invoke the concept of “polyhedral holes” in place of face- 
sharing “fused (or condensed) polyhedra”. Rule 6 applies to 
both concepts.46 One example is the truncated v2 (frequency 
two, meaning that each edge corresponds to two metal-metal 
bonds) trigonal bipyramid (49),  shown in Chart XVI, which 
has two octahedral holes and three trigonal-bipyramidal holes. 
If each octahedral hole contributes X = 1 (rule 4) and each 
trigonal-bipyramidal hole contributes X = 2 (rule 4), with three 
“hidden edges” (inner triangle of the center layer), X = -3 
(rule 7),  a net X value of 5 can be calculated. The predicted 
electron count is thus 166e as is indeed observed in the 
[Ni12(C0)21H4-n]rr anions.47 We note that the interlayer 
metal-metal distances are longer than the intralayer metal- 
metal bonds, in accord with the use of the X value of 2 for 
each of the three trigonal-bipyramidal holes. We predict that 
an electron count of 160e is more appropriate for a similar 
structure with more or less equal inter- and intralayer met- 
al-metal distances. 

Cage Size. It is evident from eq 5b that for a given number 
of vertices (V), as the number of faces (F) decreases, the cage 
size increases and hence the number of electrons (N) that can 
be “stored” in the cage increases. The cage may reach a size 
big enough to completely ”encapsulate” a metal atom of ap- 
proximately the same size for 12-vertex polyhedra or above. 

23, 1257-1 266 1257 
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Notable examples include the icosahedron, cuboctahedron or 
twinned cuboctahedron, bicapped pentagonal prism, etc. 
Besides, the cage size must be more or less spherical (and of 
the right dimension) to completely incorporate atoms such as 
carbide, nitride, sulfide, or metal atoms. Two examples of the 
nonspherical cage are those within the dodecadeltahedron 
(which is ellipsoidal) and within the pentagonal bipyramid 
(which is disklike). 
Conclusion 

In summary, we have developed in this paper a new topo- 
logical electron-counting theory based on Euler’s theorem and 
the effective atomic number rule. Each polyhedron (of given 
numbers of vertices and faces), be it simple, capped, or con- 
densed (via vertex, edge, or face sharing), is characterized by 
a parameter X ,  which can be determined from a set of simple 
rules. This simple scheme can also be used to predict the 
electron counts as well as to correlate the structures of a wide 
range of metal clusters of varying nuclearity (cf. following 
paper), thereby enabling one to achieve a better understanding 
of the interrelationships between the various cluster geometries. 
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The simple topological electron-counting theory developed in the previous paper is applied to a wide range of transition-metal 
and post-transition-metal clusters of varying nuclearity. The results are in excellent agreement with experimental observations. 
This simple electron-counting scheme provides an alternative to the skeletal electron pair theory in that it can be used to 
correlate the known as well as to predict the yet unknown polyhedral structures of a general nature. The theory also provides 
a better understanding of the interrelationships between different cluster geometries. 

Introduction 
The last decade or two has witnessed a dramatic increase 

in interest in metal cluster chemistry. Principles underlying 
the stereochemistry and bonding of metal cluster compounds 
are generally well established through synthetic, structural, 
spectroscopic, and theoretical studies.2 On the one hand, 
simple electron-counting schemes such as the effective atomic 
number (EAN) and the skeletal electron pair (SEP)3*4 rules, 
which result from these systematic studies, are extremely useful 
in correlating the structures of a vast number of clusters to 
their electron counts. On the other hand, more insight can 
be gained through more elaborate treatments such as graph 
theory? petturbed spherical shell theory: isolobal c o n ~ e p t , ~ * ~ ? ~ * *  
and the extended Huckel molecular orbital (EHM0),7-” 
Fenske-Hall approximate Hartree-F~ck,’~.’~ and SCF-Xa- 
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SW  calculation^^^-^^ (in the order of increasing calculational 
complexity). 
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